

 Khalid Abuhakmeh's Blog

 	

 Office Hours

	

 Resumé

	

 About

	

 🔍 Search

 Open Sidebar

 Advertisement

 November 21, 2023

 ASP.NET Core PDF Previews and Downloads

 Photo by Jonathan Simcoe

 Tell me if you’ve heard this one before. You spend months working with UI and UX experts, building what you think is the
most optimal means of displaying business information. You sit in a meeting with your stakeholders, demoing what you
created. Everything feels great, but then silence fills the room. A lone stakeholder raises their voice, “This is all
great, but can we get it in a PDF?”.

The Portable Document Format (PDF) is in a heated race, with Excel spreadsheets as the most valuable file format in
business today. As a developer, you will inevitably be asked to compress everything into a file that business
individuals can share via email. Don’t fight it, but embrace it.

In this post, we’ll see the two approaches to transmitting PDF files through ASP.NET Core to get two different
behaviors: In-browser preview and downloads.

Generating a PDF with QuestPDF

While this post isn’t a tutorial for generating PDFs, you’ll need a way to generate PDFs to follow along. I recommend
using the QuestPDF library. The API is easy to get started with and will have you
generating PDF documents in no time. Also, their licensing costs are reasonable, ranging from a free community license
to an Enterprise license. That said, feel free to substitute any PDF-generating method you prefer.

Here is the code for my PDF generation.

private static byte[] GetPdfDocuments()
{
 var pdf =
 Document.Create(container =>
 {
 container.Page(page =>
 {
 page.Size(PageSizes.A4);
 page.Margin(2, Unit.Centimetre);
 page.PageColor(Colors.White);
 page.DefaultTextStyle(x => x.FontSize(20));

 page.Header()
 .Text("Hello PDF!")
 .SemiBold().FontSize(36)
 .FontColor(Colors.Blue.Medium);

 page.Content()
 .PaddingVertical(1, Unit.Centimetre)
 .Column(x =>
 {
 x.Spacing(20);

 x
 .Item()
 .Text(Placeholders.LoremIpsum());
 x
 .Item()
 .Image(Placeholders.Image(200, 100));
 });

 page.Footer()
 .AlignCenter()
 .Text(x =>
 {
 x.Span("Page ");
 x.CurrentPageNumber();
 });
 });
 }).GeneratePdf();

 return pdf;
}

OK, let’s move on to one of the first ways of transmitting a PDF to your user: previewing the file within the browser.

Previewing a PDF File in the Browser

In this example, I’ll be using ASP.NET Core MVC, but this approach should work with Razor Pages and even Minimal APIs.
Adjust the code accordingly.

public IActionResult Show()
{
 var pdf = GetPdfDocuments();
 return File(pdf, "application/pdf");
}

Next, you’ll want to add the button in your view to trigger this MVC action.

<a class="btn btn-primary"
 asp-controller="Files"
 asp-action="Show"
 target="_blank">
 Preview PDF

That’s it! Clicking the Preview button will trigger your browser to open the file in a new tab. But you may be
asking yourself, “Why does this work?” Let’s look at the response headers of the HTTP request.

Content-Length: 78127
Content-Type: application/pdf
Date: Wed, 06 Sep 2023 14:17:30 GMT
Server: Kestrel

A client (web browser) uses the content type of application/pdf to determine if a default viewing application is
associated with the MIME type. Since the PDF is a standard format, most modern browsers can render them in-app (sorry,
Adobe Acrobat Reader). The user can now view the file as if it were another tab.

Note: It’s essential to recognize that users can also change their preferences regarding how files are handled, so
this can behave differently based on an individual’s local setup.

What if you don’t want this behavior and want to force a download?

Downloading a PDF File in the Browser

If you want to let folks download files rather than having the client open the file in the browser, it’s as simple as
adding another argument to the previous code.

public IActionResult Download()
{
 var pdf = GetPdfDocuments();
 return File(pdf, "application/pdf", "download.pdf");
}

Then, the button in your view is similar to the previous example.

<a class="btn btn-primary"
 asp-controller="Files"
 asp-action="Download">
 Download PDF

Now, why does this download the PDF rather than preview the file?

Let’s look at the HTTP response headers to see what’s different.

Content-Disposition: attachment; filename=download.pdf; filename*=UTF-8''download.pdf
Content-Length: 78109
Content-Type: application/pdf
Date: Wed, 06 Sep 2023 14:17:30 GMT
Server: Kestrel

You can see a Content-Disposition response header with the value of attachment and a filename. This tells the
browser that the server intends the client to download the file rather than attempt to render it as a document.

Conclusion

While the focus of this blog post was PDFs, this applies to any document type. If the user has a default application
that can preview a file, then excluding the filename will attempt to open and preview the document. For PDFs, most
browsers can render them in-app without additional applications. For downloading files, you only need to remember to
give the file a name.

I hope this post was informative to you, and as always, thanks for sharing my posts with colleagues and friends. Cheers.

 Tags:

 aspnet

 Advertisement

 About Khalid Abuhakmeh

 Khalid is a developer advocate at JetBrains focusing on .NET technologies and tooling.

 Advertisement

 Read Next

 November 14, 2023

 VestPocket: File-based Data Storage for AOT .NET Applications

 November 28, 2023

 Scriban for Text and Liquid Templating in .NET

 Mastodon

 GitHub

 RSS Feed

 Khalid Abuhakmeh ©
 2024 .

 Powered by
 Jekyll.

 Back to top

	
		
			Close Sidebar
			
				Explore Site

					Office Hours
	Resumé
	About
	🔍 Search

			
			

 About Khalid Abuhakmeh

 Khalid is a product designer, traveler, respected community member, and open source contributor.

 Recent Articles

 	

 March 5, 2024

 How to Integrate HTMX and Shoelace Web Components

	

 February 27, 2024

 Shoelace Web Components with ASP.NET Core

	

 February 20, 2024

 How to Map SQL Results To Any Object Using Entity Framework Core 8

 Tags

 11ty

 Blazor

 HTML

 JavaScript

 MAUI

 OpenAPI

 TypeScript

 aspnet

 aspnetcore

 avalonia

 azure

 beginners

 blazor

 blog

 console

 csharp

 css

 database

 development

 docker

 dotnet

 entity-framework

 fsharp

 general

 github

 html

 htmx

 http

 javascript

 jekyll

 jetbrains

 json

 kotlin

 macOS

 machine-learning

 maui

 mobile

 mvc

 nuget

 oss

 question

 razor

 regex

 ruby

 search

 sql

 static

 terminal

 tips

 twitter

 typescript

 vite

 wasm

 xamarin

 xunit

		

	

